
NAG C Library Function Document

nag_dgeqpf (f08bec)

1 Purpose

nag_dgeqpf (f08bec) computes the QR factorization, with column pivoting, of a real m by n matrix.

2 Specification

void nag_dgeqpf (Nag_OrderType order, Integer m, Integer n, double a[],
Integer pda, Integer jpvt[], double tau[], NagError *fail)

3 Description

nag_dgeqpf (f08bec) forms the QR factorization with column pivoting of an arbitrary rectangular real m
by n matrix.

If m � n, the factorization is given by:

AP ¼ Q
R
0

��

where R is an n by n upper triangular matrix, Q is an m by m orthogonal matrix and P is an n by n
permutation matrix. It is sometimes more convenient to write the factorization as

AP ¼ Q1 Q2 Þð R
0

��

which reduces to

AP ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

AP ¼ Q R1 R2 Þð ;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of minðm;nÞ elementary reflectors
(see the f08 Chapter Introduction for details). Functions are provided to work with Q in this representation
(see Section 8).

Note also that for any k < n, the information returned in the first k columns of the array a represents a QR
factorization of the first k columns of the permuted matrix AP .

The function allows specified columns of A to be moved to the leading columns of AP at the start of the
factorization and fixed there. The remaining columns are free to be interchanged so that at the ith stage
the pivot column is chosen to be the column which maximizes the 2-norm of elements i to m over
columns i to n.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bec

[NP3645/7] f08bec.1

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

3: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: n � 0.

4: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ when
order ¼ Nag ColMajor and at least maxð1; pda�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q and
the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

5: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:

if order ¼ Nag ColMajor, pda � maxð1;mÞ;
if order ¼ Nag RowMajor, pda � maxð1;nÞ.

6: jpvt½dim� – Integer Input/Output

Note: the dimension, dim, of the array jpvt must be at least maxð1; nÞ.
On entry: if jpvt½i� 6¼ 0, then the ith column of A is moved to the beginning of AP before the
decomposition is computed and is fixed in place during the computation. Otherwise, the ith column
of A is a free column (i.e., one which may be interchanged during the computation with any other
free column).

On exit: details of the permutation matrix P . More precisely, if jpvt½i� 1� ¼ k, then the kth
column of A is moved to become the ith column of AP ; in other words, the columns of AP are the
columns of A in the order jpvt½0�; jpvt½1�; . . . ; jpvt½n� 1�.

7: tau½dim� – double Output

Note: the dimension, dim, of the array tau must be at least maxð1;minðm; nÞÞ.

f08bec NAG C Library Manual

f08bec.2 [NP3645/7]

On exit: further details of the orthogonal matrix Q.

8: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, m ¼ hvaluei.
Constraint: pda � maxð1;mÞ.
On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ E, where

kEk2 ¼ Oð�ÞkAk2;

and � is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately 2
3
n2ð3m� nÞ if m � n or 2

3
m2ð3n�mÞ if

m < n.

To form the orthogonal matrix Q this function may be followed by a call to nag_dorgqr (f08afc):

nag_dorgqr (order,m,m,MIN(m,n),&a,pda,tau,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_dgeqpf (f08bec).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

nag_dorgqr (order,m,n,n,&a,pda,tau,&fail)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bec

[NP3645/7] f08bec.3

To apply Q to an arbitrary real rectangular matrix C, this function may be followed by a call to
nag_dormqr (f08agc). For example,

nag_dormqr (order,Nag_LeftSide,Nag_Trans,m,p,MIN(m,n),&a,pda,tau,&c,pdc,
&fail)

forms C ¼ QTC, where C is m by p.

To compute a QR factorization without column pivoting, use nag_dgeqrf (f08aec).

The complex analogue of this function is nag_zgeqpf (f08bsc).

9 Example

To solve the linear least-squares problem

minimizekAxi � bik2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

where

A ¼

�0:09 0:14 �0:46 0:68 1:29
�1:56 0:20 0:29 1:09 0:51
�1:48 �0:43 0:89 �0:71 �0:96
�1:09 0:84 0:77 2:11 �1:27
0:08 0:55 �1:13 0:14 1:74

�1:59 �0:72 1:06 1:24 0:34k

1
CCCCCCA

0
BBBBBB@

and B ¼

�0:01 �0:04
0:04 �0:03
0:05 0:01

�0:03 �0:02
0:02 0:05

�0:06 0:07k

1
CCCCCCA

0
BBBBBB@

:

Here A is approximately rank-deficient, and hence it is preferable to use nag_dgeqpf (f08bec) rather than
nag_dgeqrf (f08aec).

9.1 Program Text

/* nag_dgeqpf (f08bec) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
double tol;
Integer i, j, jpvt_len, k, m, n, nrhs;
Integer pda, pdb, pdx, tau_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *b=0, *tau=0, *x=0;
Integer *jpvt=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]

f08bec NAG C Library Manual

f08bec.4 [NP3645/7]

#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08bec Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%ld%*[^\n] ", &m, &n, &nrhs);

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = m;
pdx = m;

#else
pda = n;
pdb = nrhs;
pdx = nrhs;

#endif
tau_len = MIN(m,n);
jpvt_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, double)) ||

!(b = NAG_ALLOC(m * nrhs, double)) ||
!(tau = NAG_ALLOC(tau_len, double)) ||
!(x = NAG_ALLOC(m * nrhs, double)) ||
!(jpvt = NAG_ALLOC(jpvt_len, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= nrhs; ++j)

Vscanf("%lf", &B(i,j));
}

Vscanf("%*[^\n] ");

/* Initialize JPVT to be zero so that all columns are free */
f16dbc(n, 0, jpvt, 1, &fail);
/* Compute the QR factorization of A */
f08bec(order, m, n, a, pda, jpvt, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08bec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Choose TOL to reflect the relative accuracy of the input data */
tol = 0.01;

/* Determine which columns of R to use */
for (k = 1; k <= n; ++k)

{
if (ABS(A(k, k)) <= tol * ABS(A(1, 1)))

break;
}

--k;

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bec

[NP3645/7] f08bec.5

/* Compute C = (Q**T)*B, storing the result in B */

f08agc(order, Nag_LeftSide, Nag_Trans, m, nrhs, n, a, pda,
tau, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from f08agc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute least-squares solution by backsubstitution in R*B = C */

f07tec(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, k, nrhs,
a, pda, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from f07tec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
for (i = k + 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

B(i,j) = 0.0;
}

/* Unscramble the least-squares solution stored in B */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

X(jpvt[i - 1], j) = B(i, j);
}

/* Print least-squares solution */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,

"Least-squares solution", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (tau) NAG_FREE(tau);
if (x) NAG_FREE(x);
if (jpvt) NAG_FREE(jpvt);
return exit_status;

}

9.2 Program Data

f08bec Example Program Data
6 5 2 :Values of M, N and NRHS

-0.09 0.14 -0.46 0.68 1.29
-1.56 0.20 0.29 1.09 0.51
-1.48 -0.43 0.89 -0.71 -0.96
-1.09 0.84 0.77 2.11 -1.27
0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 :End of matrix A
-0.01 -0.04
0.04 -0.03
0.05 0.01

-0.03 -0.02
0.02 0.05

-0.06 0.07 :End of matrix B

f08bec NAG C Library Manual

f08bec.6 [NP3645/7]

9.3 Program Results

f08bec Example Program Results

Least-squares solution
1 2

1 -0.0370 -0.0044
2 0.0647 -0.0335
3 0.0000 0.0000
4 -0.0515 0.0018
5 0.0066 0.0102

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bec

[NP3645/7] f08bec.7 (last)

	f08bec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	a
	pda
	jpvt
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

